Enantioselective Total Synthesis of (–)-Dehydrobatzelladine C

ORGANIC

Shawn K. Collins,[†] Andrew I. McDonald,[‡] Larry E. Overman,^{*} and Young Ho Rhee

Department of Chemistry, 516 Rowland Hall, University of California at Irvine, Irvine, California 96697-2025

leoverma@uci.edu

Received February 1, 2004

ABSTRACT

 NH_2 $\ddot{N}H_2$

(-)-dehydrobatzelladine C

The oxidation of two tethered Biginelli adducts was examined as a potential key step in total syntheses of highly oxidized batzelladine and crambescidin alkaloids. Although angular hydroxyl substitution could not be introduced, dehydrogenation was readily accomplished. This latter conversion is a key step in the first total synthesis of dehydrobatzelladine C.

A variety of structurally intricate guanidine alkaloids are present in marine sources.¹ Among the most notable of these are the crambescidin² and batzelladine³ alkaloids, which have been isolated primarily from sponges belonging to the orders Poecilosclerida and Axinellida.¹ Diverse biological activities have been reported for these secondary metabolites, including cytotoxicity toward several cancer cell lines, antifungal and antiviral activities, and inhibition of HIV-1 fusion.^{1,4} The novel structures of these marine alkaloids have inspired the development of many strategies for assembling polycyclic guanidines that contain the octahydro-5,6,6a-triazaacenaphthalene (1) and hexahydro-5,6,6a-triazaacenaphthalene (2)

8925. (b) Jares-Erijman, E. A.; Sakai, R.; Rinehart, K. L. J. Org. Chem. 1991, 56, 5712.

moieties common to the crambescidin and batzelladine alkaloids.^{1,5,6}

Intramolecular variants of the Biginelli condensation⁷ have been developed in our laboratories for the synthesis of crambescidin⁶ and batzelladine⁸ alkaloids as well as simplified congeners.⁹ In this communication, we report our preliminary efforts to access rare members of the crambescidin family that possess either angular hydroxyl substitution on the central tricyclic octahydro-5,6,6a-triazaacenaphthalene fragment such as crambescidin 816 (**4**) or a tetrahy-

(9) Cohen, F.; Collins, S. K.; Overman, L. E. Org. Lett. 2003, 5, 4485.

[†] Current address: Université de Montréal, Départemente de Chimie, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada, H3C 3J7. [‡] Current address: Cytokinetics, 280 East Grand Ave., South San

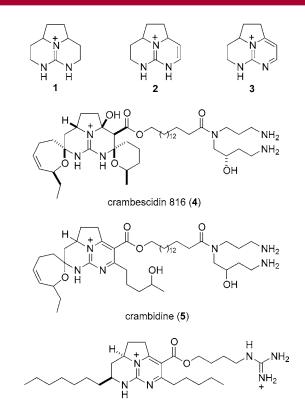
Francisco, CA, 94080.

⁽¹⁾ For reviews, see: Berlinck, R. G. S. Nat. Prod. Rep. 2002, 19, 617 and earlier reviews in this series.

⁽²⁾ For the initial reports, see: (a) Kashman, Y.; Hirsh, S.; McConnell, O. J.; Ohtani, I.; Kusumi, T.; Kakisawa, H. J. Am. Chem. Soc. 1989, 111,

^{(3) (}a) Patil, A. D.; Kumar, N. V.; Kokke, W. C.; Bean, M. F.; Freyer, A. J.; De Brosse, C.; Mai, S.; Truneh, A.; Faulkner, D. J.; Carte, B.; Breen, A. L.; Hertzberg, R. P.; Johnson, R. K.; Westley, J. W.; Potts, B. C. M. J. Org. Chem. **1995**, 60, 1182. (b) Patil, A. D.; Freyer, A. J.; Taylor, P. B.; Carte, B.; Zuber, G.; Johnson, R. K.; Faulkner, D. J. J. Org. Chem. **1997**, 62. 1814.

⁽⁴⁾ Chang, L.; Whittaker, N. F.; Bewley, C. A. J. Nat. Prod. 2003, 66, 1490.

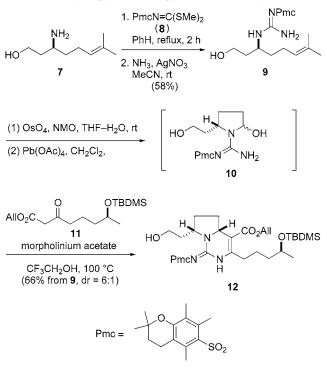

⁽⁵⁾ For total syntheses appearing since the most recent reviews, see; (a) Nagasawa, K.; Georgeiva, A.; Koshino, H.; Nakata, T.; Kita, T.; Hashimoto, Y. *Org. Lett.* **2002**, *4*, 177. (b) Ishiwata, T.; Hino, T.; Koshino, H.; Hashimoto, Y.; Nakata, T.; Nagasawa, K. *Org. Lett.* **2002**, *4*, 2921. (c) Nagasawa, K.; Ishiwata, Y.; Hasimoto, Y.; Nakata, T. *Tetrahedron Lett.* **2002**, *43*, 6383. (d) Moore, C. G.; Murphy, P. J.; Williams, H. L.; McGown, A. T.; Smith, N. K. *Tetrahedron Lett.* **2003**, *44*, 251.

^{(6) (}a) Overman, L. E.; Rabinowitz, M. H.; Renhowe, P. A. J. Am. Chem. Soc. 1995, 117, 2657. (b) Overman, L. E.; Rabinowitz, M. H. J. Org. Chem. 1993, 58, 3235. (c) Coffey, D. S.; McDonald, A. I.; Overman, L. E.; Rabinowitz, M. H.; Renhowe, P. A. J. Am. Chem. Soc. 2000, 122, 4893. (d) Coffey, D. S.; Overman, L. E.; Stappenbeck, F. J. Am. Chem. Soc. 2000, 122, 4904. (e) Coffey, D. S.; McDonald, A. I.; Overman, L. E.; Stappenbeck, F. J. Am. Chem. Soc. 1999, 121, 6944.

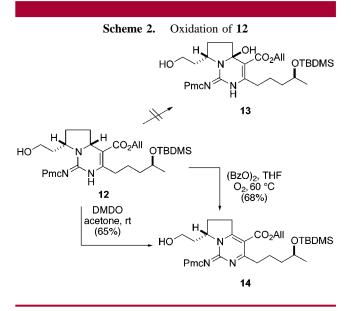
⁽⁷⁾ For a recent review, see; Aron, Z.; Overman, L. E. Chem. Commun. 2004, 253.

^{(8) (}a) Franklin, A. S.; Ly, S. K.; Mackin, G. H.; Overman, L. E.; Shaka, A. J. J. Org. Chem. **1999**, 64, 1512. (b) Cohen, F.; Overman, L. E.; Sakata, S. K. L. Org. Lett. **1999**, 1, 2169. (c) Cohen, F.; Overman, L. E. J. Am. Chem. Soc. **2001**, 123, 10782.

dro-5,6,6a-triazaacenaphthalene moiety (**3**) such as that found in crambidine (**5**)¹⁰ and dehydrobatzelladine C (**6**).¹¹ The total synthesis of (–)-dehydrobatzelladine C (**6**) achieved during these investigations constitutes the first total synthesis of a member of the crambescidin or batzelladine families that contains the tetrahydro-5,6,6a-triazaacenaphthalene fragment.



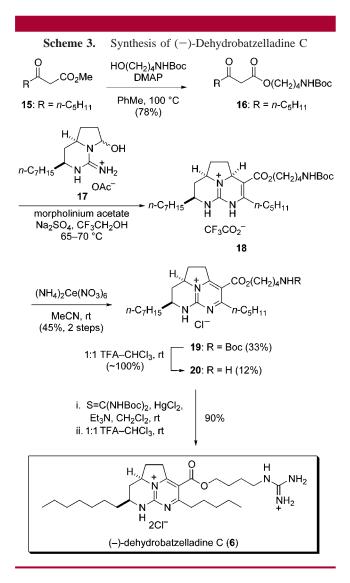
dehydrobatzelladine C (6)


Figure 1. Representative polycyclic guanidine alkaloids containing hydro-5,6,6a-triazaacenaphthalene fragments.

1-Oxo- or 1-iminohexahydropyrrolo[1,2-*c*]pyrimidine carboxylic esters were key intermediates in our earlier total syntheses of crambescidin alkaloids.^{6,7} In this investigation, we first prepared an *N*-sulfonyl-protected version of the latter intermediate, **12**,¹² which we hoped could be selectively hydroxylated at the angular carbon β to the ester substituent (Scheme 1). The 2,2,5,7,8-pentamethylchroman-6-sulfonyl (Pmc) guanidine fragment was introduced in two steps by sequential reaction of amino alcohol **7**^{6c} with carboimidodithioate **8** and ammonia.¹³ Oxidative cleavage of the double bond of **9**, followed by tethered Biginelli condensation of the resulting crude product **10** with β -ketoester **11**, provided sulfonyliminopyrrolopyrimidine **12** in 66% yield from **9**.¹⁴

We explored oxidation of **12** with a variety of agents. Unfortunately, all attempts to convert **12** to **13** by reaction **Scheme 1.** Synthesis of Pmc-Protected 1-Imino-hexahydropyrrolo[1,2-*c*]pyrimidine Carboxylic Ester **12**

of the former with reagents such as $Pb(OAc)_4$, H_2O_2 , t-BuO₂H, SeO₂, RuO₂, or DDQ, under a variety of reaction conditions, were unsuccessful (Scheme 2).¹⁵ Only the reaction


of **12** with dimethyldioxirane or benzoyl peroxide delivered a clean product, in these cases the didehydro derivative **14**. This dehydrogenation of **12** suggested a straightforward way to synthesize alkaloids such as **5** or **6** that contain a 2-aminopyrimidinium unit.¹⁶

Dehydrobatzelladine C ($\mathbf{6}$) was chosen as our initial target (Scheme 3). The total synthesis of $\mathbf{6}$ began by DMAP-

⁽¹⁰⁾ Berlinck, R. G. S.; Braekman, J. C.; Daloze, D.; Bruno, I.; Ricco, R.; Ferri, S.; Spampinato, S.; Speroni, E. J. Nat. Prod. **1993**, *56*, 1007.

⁽¹¹⁾ Braekman, J. C.; Daloze, D.; Tavares, R.; Hajdu, E.; Van Soest, R.
W. M. J. Nat. Prod. 2000, 63, 193.
(12) McDonald, A. I.; Overman, L. E. J. Org. Chem. 1999, 64, 1520.

⁽¹²⁾ McDonau, A. I., Overman, E. E. J. Org. Chem. 1999, 04, 1520 (13) Heizmann, G.; Felder, E. R. *Peptide Res.* **1994**, 7, 328.

catalyzed transesterification¹⁷ of methyl 3-oxooctanoate (**15**) with *N*-Boc-protected 4-aminobutanol to provide β -keto ester **16** in 78% yield. Biginelli condensation of 2.7 equiv of **16** with enantiopure guanidine aminal **17**, which is available in 10 steps from commercial materials,¹⁸ took place in CF₃-CH₂OH at 65–70 °C with high stereoselectivity (>10:1) to

form hexahydro-5,6,6a-triazaacenaphthalene 18. As this product was difficult to separate from residual β -ketoester,¹⁹ a mixture of these compounds was oxidized directly with 1 equiv of cerric ammonium nitrate at room temperature in acetonitrile.²⁰ Purification of this product by reverse-phase preparative HPLC then provided 19 as the hydrochloride salt in 33% overall yield and 12% of the corresponding primary amine 20. This latter product is readily generated from Boc derivative 19 by reaction with a 1:1 mixture of TFA/CHCl₃. Following extensive experimentation, it was found that primary amine 20 was best elaborated to the corresponding guanidine by first condensing the crude amine with N,N'di(tert-butoxycarbonyl)thiourea followed by removal of the Boc groups with acid. Purification of this product by reversephase preparative HPLC provided pure (-)-dehydrobatzelladine C (6) as its dihydrochloride salt in 90% yield. The synthetic product, $[\alpha]_D$ –88 (c 0.23, MeOH), showed ¹H NMR spectra consistent with that of the natural product.²¹ Moreover, ¹³C NMR spectra of the diacetate salt of 6 matched perfectly (± 0.1 ppm for all signals) with those reported for the natural alkaloid.¹¹ The optical rotation of the marine isolate was not reported,¹¹ precluding comparison of this property.

In summary, a wide variety of 1-iminohexahydropyrrolo-[1,2-c]pyrimidine carboxylic esters can be prepared by tethered Biginelli condensations.^{6,7} These products can be selectively dehydrogenated to generate congeners containing a 2-aminopyrimidinium moiety. This oxidation is a key step in the first total synthesis of dehydrobatzelladine C (**6**).

Acknowledgment. We thank Pharma Mar and NHLBI (HL-25854) for financial support. S.K.C. acknowledges the Natural Sciences and Engineering Research Council of Canada (NSERC) for a postdoctoral fellowship. NMR and mass spectra were determined at UCI with instruments purchased with the assistance of NSF and NIH.

Supporting Information Available: Experimental procedures and characterization data for 2,2,5,7,8-pentamethylchroman-6-sulfonamide, *S*,*S*-dimethyl *N*-(2,2,5,7,8-pentamethyl-chroman-6-sulfonyl)carbonimidodithioate (**8**), and new compounds reported in Schemes 1–3, as well as ¹H and ¹³C NMR spectra of synthetic (–)-dehydrobatzelladine C (**6**). This material is available free of charge via the Internet at http://pubs.acs.org.

OL0498141

⁽¹⁴⁾ The trans epimer of **12** was isolated in 8% yield. The relative configuration of these epimers was assigned by analogy to closely related Biginelli products whose configuration had been established rigorously by chemical correlation.¹²

⁽¹⁵⁾ These reactions either returned **12** or resulted in the formation of intractable mixtures.

⁽¹⁶⁾ There are several examples of the conversion of simple Biginelli adducts to pyrimidines; see: (a) Kappe, O. C. *Acc. Chem. Res.* **2000**, *33*, 879. (b) Kappe, O. C. *Org. React.* **2004**, *63*, in press.

⁽¹⁷⁾ Taber, D. F.; Amedio, J. C.; Patel, Y. K. J. Org. Chem. 1985, 50, 3618.

⁽¹⁸⁾ For the preparation of the enantiomer of 17, see ref 8a.

⁽¹⁹⁾ Tethered Biginelli adduct **18** could be isolated in pure form (48% yield) by preparative reverse-phase HPLC.

⁽²⁰⁾ This oxidation can also be accomplished in similar yield with benzoyl peroxide; however, purification of the product is more cumbersome.

⁽²¹⁾ We thank Professor Braekman for a copy of the 600 MHz ¹H NMR spectrum of authentic dehydrobatzelladine C.